Price and volume measurement of non-life insurance services:

A statistical approach

Antonio Chessa

Statistics Netherlands (CBS)

<u>acsa@cbs.nl</u>

Voorburg Group, ONS, 19-23 September 2011

Outline

- Views on nominal value, SNA
- Previous method at CBS
- New modelling approach for nominal value
- Service and volume characterisation
- Estimation of price and volume indices
- Results
- Closing remarks

It is complex...

Public service sectors

- Measurement is also difficult for health care, etc.
- No market prices, regulated tariffs in Netherlands
- But, at least, expenditures offer starting point

Insurance services

- What is nominal value of production?
- Prices are not directly observed

Net or gross value?

Gross approach

- Nominal value = Premiums + supplements
- Risk assumption is core of insurance service
- Hornstein & Prescott (1991): Claims viewed as intermediary consumption → gross value

Net approach

- Nominal value = Premiums + supplements claims
- It's a margin that the insurance industry retains
- Focus is on activities (e.g., policy administration)

SNA 2008 on non-life insurance

"If an expectations approach is being used, the formula to calculate output takes the following form:

Actual premiums earned *plus* premium supplements *minus* adjusted claims incurred,

where adjusted claims are estimated from past experience."

(Chapter 17, par. 17.27)

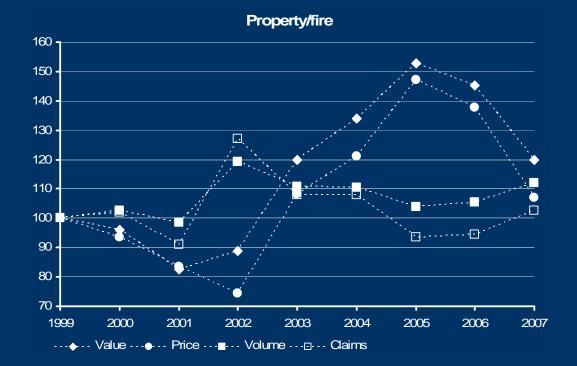
Previous method at CBS

Nominal value

- Premiums + supplements claims (SNA 1993)
- Hard data, no adjustments to claims

Volume indices

- Administration: #policies
- Acquisition: #new policies
- Claims: #claims handled
- Deflated index for insured value


"Direct service method" (Eurostat Handbook)

Problems

- 1. Negative nominal values
- 2. Inconsistent behaviour between volume and nominal value because of how claims are dealt with

Value and volume in old method

Model for nominal value

Notation

 $P_{i,t} = \text{Premiums for policy (type) } i \text{ in year } t$ $EL_{i,t} = \text{Expected loss}$ $ES_{i,t} = \text{Expected investment income}$ $\mu_i = \text{Parameter, with values } 0 < \mu_i \le 1$

Relation between premiums and risk $\mu_i P_{i,t} = EL_{i,t} - ES_{i,t}$

Nominal value

SNA 2008: $P_{i,t} + ES_{i,t} - EL_{i,t} = (1 - \mu_i)P_{i,t}$ $= \frac{1 - \mu_i}{\mu_i} (EL_{i,t} - ES_{i,t})$ Gross approach: $\frac{1}{\mu_i} (EL_{i,t} - ES_{i,t}) + ES_{i,t}$

Data in this model

Main types of insurance

- Health and accident
- Motor vehicles
- Fire/property
- Legal aid, liability
- Transport

For each type, from 1995:

- Earned and unearned premiums
- Incurred losses

Investment income, from 1995:

Direct and total income (aggregate values)

What is estimated

Expected investment income Expected loss

- $EL_{i,t} = \mu_i P_{i,t} + ES_{i,t}$
- μ_i assumed to be time-independent

Method: 'adjusted' maximum likelihood

- Uses a classical likelihood function
- With a penalty term for #parameters

Price and volume summary

Characterisation of services

• By μ_i and expected loss for insurance type *i*

Volume measures

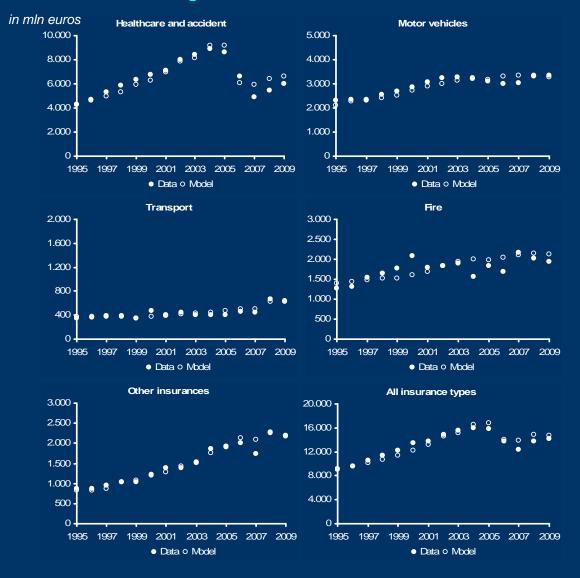
- Number of policies
- Represent 'bundles' of activities per time unit
- Quantities available per quarter k ($q_{i,k,t}$)

Nominal values and prices

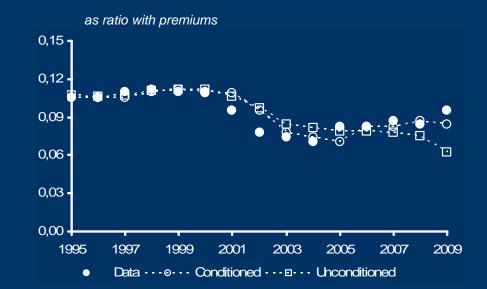
- Nominal value: $(1 \mu_i)P_{i,k,t}$
- Average price: $(1 \mu_i)P_{i,k,t}/q_{i,k,t}$

Volume and value indices

Value index $\frac{\sum_{i=1}^{N} (1-\mu_i) P_{i,t}}{\sum_{i=1}^{N} (1-\mu_i) P_{i,t-1}}$

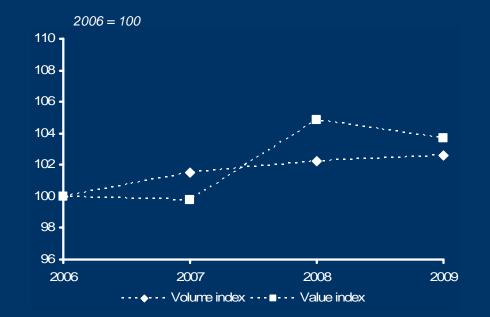

Volume index (Laspeyres)

$$\sum_{k=1}^{4} \sum_{i=1}^{N} \frac{(1-\mu_i)P_{i,k,t-1}}{\sum_{m=1}^{4} \sum_{j=1}^{N} (1-\mu_j)P_{j,m,t-1}} \frac{q_{i,k,t}}{q_{i,k,t-1}}$$


Values of $1 - \mu_i$

- Health care, accident: 0.279
- Motor vehicles; transport: 0.370
- Fire; legal aid, liability: 0.504

Fits of expected loss to data



Fits of expected investment income

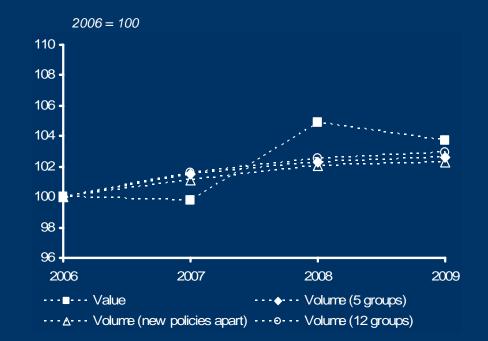
Value and volume indices (1)

Average yearly growth rates:

- Value: 1.21%
- Volume: 0.86%

Other model choices

Loss and investment income


- Different parameter settings/model versions
- Moving average models (Chen & Fixler, 2003)

Refinement of product groups/service types

- Groups may be quite heterogeneous, so we
 - extended from 5 to 12 product groups, and
 - distinguished between existing and new policies.
 - Additional assumptions are needed (w.r.t. μ_i).

Value and volume indices (2)

Average yearly growth rates:

1.21%
0.86%
0.97%

• Volume (new policies apart): 0.76%

Concluding remarks

Old vs new method

- Old method violates essential conditions (nom.value)
- New method is well defined
- Fits SNA 2008 and Eurostat guidelines
- Parameterisation
 → different model versions can be studied

Results of new method

- Product groups may be heterogeneous
- Refinements give small variations in volume indices